Author: Eiko

Time: 2025-02-01 23:03:11 - 2025-02-01 23:03:11 (UTC)

References: p-adic Differential Equations by Kiran S. Kedlaya

Rings of functions on discs and annuli

Let \(K\) be a complete field of characteristic \(0\) for a norm \(|\cdot |\) with residue field \(\kappa\) of characteristic \(p\) (which is allowed to be zero as well o.o). The norm is normalized \(|p| = p^{-1}\) (if \(p\neq 0\)).

Various Power Series Rings

Recall in rigid analytic geometry of \(\mathbb{P}^1\), the most important examples of affinoid subset \(F\subset \mathbb{P}^1\) are the ring domain \(\{|z|=1\}\) and the thick ring domain \(\{r_1\le |z|\le r_2\}\). The ring of functions on these domains are given by power series rings with convergence conditions, similar to a Tate algebra.

  • The classical Tate algebra is the ring of power series \(\sum_{n\ge 0} a_n t^n\) with \(|a_n|\xrightarrow{n\to \infty} 0\), corresponding to \(\mathcal{O}(\{|z|\le 1\})\).

  • For \(F=\{|z|\le |\beta|\}\), this is just a slight generalization of the Tate algebra, where you can also conveniently think of the Tate algebra of the variable \(z/\beta\) instead of \(z\).

    \[\begin{align*} \mathcal{O}(F) &= K\left\langle \frac{z}{\beta} \right\rangle \\ &= \left\{ \sum_{n\ge 0} a_n \beta^{-n} t^n : |a_n|=o(1) \right\} \\ &= \left\{ \sum_{n\ge 0} c_n t^n : |c_n\beta^n|=o(1) \right\} \\ &= \left\{ \sum_{n\ge 0} c_n t^n : v(c_n)-n\cdot v(1/\beta)\xrightarrow{n\to \infty} \infty \right\} \end{align*}\]

  • \(F=\{|\alpha|\le |z|\}\). If we do a variable substitution and consider power series ring based at infinity, i.e. with variable \(\frac{\alpha}{z}\), the Tate algebra of variable \(\frac{\alpha}{z}\) give the ring \(\mathcal{O}(F)\).

    \[\begin{align*} \mathcal{O}(F) &= K\left\langle \frac{\alpha}{z} \right\rangle \\ &= \left\{ \sum_{n\ge 0} a_n \alpha^n z^{-n}: |a_n|=o(1) \right\} \\ &= \left\{ \sum_{n\ge 0} c_n z^{-n}: |c_n \alpha^{-n}|=o(1) \right\} \\ &= \left\{ \sum_{n\ge 0} c_n z^{-n} : v(c_n)-(-n)\cdot v(1/\alpha)\xrightarrow{n\to \infty} \infty \right\} \end{align*}\]

  • For \(F=\{|\alpha|\le |z|\le |\beta|\}\), the thick ring domain. This \(\mathcal{O}(F)\) is in fact the intersection of \(K\langle \frac{z}{\beta} \rangle\) and \(K\langle \frac{\alpha}{z} \rangle\).

    \[\mathcal{O}(F) =K\left\langle \frac{\alpha}{z}, \frac{z}{\beta} \right\rangle =\left\{ \sum_{n\in \mathbb{Z}} a_n t^n : \quad \begin{align*} &v(a_k)-kv(1/\beta)\xrightarrow{k\to \infty} \infty \\ &v(a_k)-kv(1/\alpha)\xrightarrow{k\to -\infty} \infty \end{align*} \right\} \]

    or equivalently as

    \[K\left\langle \frac{\alpha}{z}, \frac{z}{\beta} \right\rangle =\left\{ \sum_{n\in \mathbb{Z}} a_n t^n : \quad \begin{align*} &|a_k\alpha^k|=o(1) \\ &|a_k\beta^{k}|=o(1) \end{align*} \right\}. \]

    Which pictorially is a V-shaped region, your function need to eventually go above the V-shape and the height to the V-shape needs to go to infinity on both sides. We also conveniently denote this ring as \(K\langle \frac{\alpha}{z}, \frac{z}{\beta} \rangle\).

  • For \(F=\{|z|=1\}\), the ring domain, we have

    \[\begin{align*} \mathcal{O}(F) &= K\langle z, z^{-1}\rangle \\ &= \left\{ \sum_{n\in \mathbb{Z}} a_n t^n : |a_n|\xrightarrow{|n|\to \infty} 0 \right\} \\ &= \left\{ \sum_{n\in \mathbb{Z}} a_n t^n : v(a_n)-n\cdot v(1/1)\xrightarrow{|n|\to \infty} \infty \right\} \end{align*}\]

Some Other Intermediate Rings

  • We define the ring with finite Gauss norm as

    \[K[[t/\beta]]_0 := \left\{ \sum_{i=0}^\infty a_i t^i : \sup |a_i|\beta^i < \infty \right\}. \]

    Clearly we have for \(\delta<\beta\) that

    \[K\langle t/\beta \rangle \subset K[[t/\beta]]_0 \subset K\langle t/\delta \rangle\]

    Note that we can also write it as

    \[K[[t]]_0 = \mathfrak{o}_K[[t]]\otimes_{\mathfrak{o}_K} K\]

    where \(\mathfrak{o}_K\) is the ring of integers of \(K\).

  • It is also possible to mix the two type of boundaries, producing rings like

    \[K\langle \frac{\alpha}{z}, \frac{z}{\beta} ]]_0 =\left\{ \sum_{n\in \mathbb{Z}} a_n t^n : \quad \begin{align*} &\sup |a_k|\beta^k < \infty \\ &|a_k|\alpha^{k} = o(1) \end{align*} \right\} \]

    \[K[[\frac{\alpha}{z}, \frac{z}{\beta} ]]_0 =\left\{ \sum_{n\in \mathbb{Z}} a_n t^n : \quad \begin{align*} &\sup |a_k|\beta^k < \infty \\ &\sup |a_k|\alpha^{k} < \infty \end{align*} \right\} \]

    For which we have the simple property, for \(\delta\in [\alpha, \beta)\)

    \[ K\langle \alpha/t, t/\beta\rangle \subset K\langle \alpha/t, t/\beta]]_0 \subset K\langle \alpha/t, t/\delta\rangle \]

Newton Polygon

Given an element \(x\) of \(K\langle \alpha/t, t/\beta\rangle\), we can associate a Newton polygon to it.

  1. The full Newton Polygon \(\operatorname{NP}(x)\) is the lower convex hull of the set of points \((i, v(a_i))\).

  2. The essential Newton Polygon \(\operatorname{ENP}(x) = \operatorname{NP}_{[\log |\alpha|, \log |\beta|]}(x)\) is generated by the subset of slopes within \([\log |\alpha|, \log |\beta|]\).

  3. Denote by \(d_\lambda(f) = \inf (v(a_i)-\lambda i)\) the distance of the Newton polygon to the line \(y=\lambda x\).

Properties

Note: all the \(\log\) are respect to the base of the valuation. \(\log |\alpha|\) can also be more easily understood as \(v(1/\alpha)\).

  • \(\operatorname{ENP}(x)\) has finite length.

  • \(d_{(\cdot)}(x)\) is continuous and piecewise linear on \([\log |\alpha|, \log |\beta|]\).

  • \(|x|_{\lambda}\) is continuous on \([\log |\alpha|, \log |\beta|]\) and log-convex, for \(t\in [0,1]\) we have

    \[|x|_{t\lambda+(1-t)\mu} \le |x|_{\lambda}^t |x|_{\mu}^{1-t}.\]

    Or equivalently, for \(x\in K\langle \alpha/t, t/\beta\rangle\) we have that \(d_{(\cdot)}(x)\) is concave, i.e.

    \[d_{t\lambda+(1-t)\mu}(x) \ge t d_{\lambda}(x) + (1-t) d_{\mu}(x).\]

    Proof:

    \[\begin{align*} \inf\left[v(a_i)-(t\lambda+(1-t)\mu)i\right] &=\inf\left[ t(v(a_i)-\lambda i) + (1-t)(v(a_i)-\mu i) \right] \\ &\ge t\inf(v(a_i)-\lambda i) + (1-t)\inf(v(a_i)-\mu i) \end{align*}\]

    Taking \(|x|_\lambda = p^{-d_\lambda(x)}\) we obtain the log-convexity.

  • Since \(|x|_\lambda\) is log-convex, there exists a point \(\lambda_0\) (if we allow \(\pm \infty\)) such that \(|x|_{\lambda_0}\) is minimal, \(|x|_{\lambda}\) is decreasing for \(\lambda<\lambda_0\) and increasing for \(\lambda>\lambda_0\).

    If \(\alpha=0\), this \(\lambda_0=-\infty\) and we have \(|x|_{\lambda}\) is increasing on \((-\infty, \log |\beta|]\).

Frechet Completeness

The rings \(K\langle \alpha/t, t/\beta\rangle\) and \(K\langle \alpha/t, t/\beta]]_0\) are Frechet complete with respect to any Gauss norm \(|\cdot|_\lambda\) with slope \(\lambda\in [\log |\alpha|, \log |\beta|]\).

Unit Structure

  • A non-zero element \(f\in K\langle t/\beta\rangle\) is a unit iff \(|f-c|_{\log |\beta|}<|f|_{\log |\beta|}\) for some unit \(c\in K^\times\).

  • A nonzero element \(f\in K\langle \alpha/t, t/\beta\rangle\) is a unit iff there exists a term \(ct^i\) such that \(|f-ct^i|_{\lambda}<|f|_{\lambda}\) for \(\lambda \in \{\log |\alpha|, \log |\beta|\}\).

  • A nonzero element \(f\in K\langle \alpha/t, t/\beta]]_0\) is a unit iff there exists a term \(ct^i\) such that \(|f-ct^i|_{\lambda}<|f|_{\lambda}\) for \(\lambda \in [\log |\alpha|, \log |\beta|)\).

Factorization

In \(K\langle\alpha/t,t/\beta\rangle\) or \(K\langle\alpha/t,t/\beta]]_0\), if the series \(x\) has a unique term maximizing \(|x_m|\rho^m\) for some \(\rho\in [\alpha,\beta]\) or the supremum of \(|x_i|\rho^i\) is achievable with least achieving index \(m\), then by moving the term \(x_mt^m\) to center we can obtain the following factorization:

\[ x = x_mt^m \cdot g(t) \cdot h(t^{-1}) \]

with \(h(t^{-1})\in K\langle \alpha/t \rangle\Leftrightarrow h\in K\langle t/\alpha^{-1}\rangle\), \(|h(t^{-1})-1|<1\) and \(g(t)\in K\langle t/\beta \rangle\) or \(K\langle t/\beta ]]_0\) with \(|g|_{\log |\beta|}=1\) (If you are getting unique index \(m\), \(|g|_{\log |\beta|}<1\)).

Analytic Elements

Sitting between \(K\langle t/\beta\rangle \subset K[[t/\beta]]_0\), the set of elements in \(K[[t/\beta]]_0\) that comes from limit of rational functions \(K(t)\) is called the set of analytic elements, denoted \(K[[t/\beta]]_\operatorname{an}\).