Author: Eiko

Tags: category theory, yoneda lemma

Time: 2024-11-26 14:39:07 - 2024-11-26 15:14:37 (UTC)

Yoneda’s Lemma

Let \(h^X = \mathrm{Hom}(X,)\) and \(h_Y=\mathrm{Hom}(,Y)\) be the covariant and contravariant \(\mathrm{Hom}\) functors. The Yoneda’s Lemma states, in the category of (covariant and contravariant) functors, for a covariant functor \(F:\mathcal{C}\to {\bf Sets}\) and contravariant functor \(G:\mathcal{C}^{op}\to {\bf Sets}\), we have

  • \(\mathrm{Hom}(h^X, F) = F(X)\)

  • \(\mathrm{Hom}(h_Y, G) = G(Y).\)

As a special case we have

  • \(\mathrm{Hom}(h_X,h_Y) = \mathrm{Hom}(X,Y)\)

  • \(\mathrm{Hom}(h^X, h^Y) = \mathrm{Hom}(Y,X)\)

i.e. \(h_\square : \mathcal{C}\to \mathrm{Hom}(\mathcal{C}^{op},{\bf Sets})\) and \(h^\square: \mathcal{C}^{op}\to \mathrm{Hom}(\mathcal{C}, {\bf Sets})\) are fully faithful functors.