Let \(C/\mathbb{Q}\) be a curve of genus \(g\) over \(\mathbb{Q}\),
\[y^2 = x^{2g+1}+\dots +b_0\]
Adn let \(J=J(C)\) the Jacobian, we have \(J\subset \mathbb{P}^{3^g-1}\) via \(|3\cdot \theta|\).
\[\theta = \{P, -\infty, P\}\]
\(V_9=\mathcal{O}(9)\) is the space of linear forms on my projective space \(\mathbb{P}^8\), consider
\[\wedge^3 V_9 \to \wedge V_9 \otimes V_9\]
for example \(e_1\wedge e_2\wedge e_3\mapsto x_1\otimes e_2\wedge e_3 - x_2 \otimes e_1\wedge e_2 + x_3 \otimes e_2\wedge e_3\).
\[\begin{pmatrix} 0 & x_1 & -x_3 \\ -x_1 & 0 & x_2 \\ x_3 & -x_2 & 0 \\ \end{pmatrix}\]
Theorem. There is a \(\alpha_J\in \wedge^3 V\), such that
\[ J\subset \mathbb{P}^8 : \{ v\in \mathbb{P}^8 : \mathrm{rank}\Phi(\alpha_J)(v) \le 4\} \]
is thought as the following sequence
\[ J(\mathbb{Q})/3J(\mathbb{Q}) \to {\mathrm{Sel}}^{(3)}(J/\mathbb{Q}) \to \mathrm{Sha}(J/\mathbb{Q})[3] \]
\[{\mathrm{Sel}}^{(3)}(J/\mathbb{Q}) = \{ T\subset \mathbb{P}^8 : T\text{ twist of } J\subset \mathbb{P}^8, |3\cdot \theta|\}.\]